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We focus on rating of non-life insurance contracts. We employ multiplicative models

with basic premium levels and specific surcharge coefficients for various levels of selected
risk/rating factors. We use generalized linear models (GLM) to describe the probability

distribution of total losses for a contract during one year. We show that the traditional
frequency–severity approaches based only on GLM with logarithmic link function can

lead to estimates which do not fulfill business requirements. For example, a maximal

surcharge and monotonicity of coefficient can be desirable. Moreover, our approach can
handle total losses, which are based on arbitrary loss distributions, possibly decomposed

into several classes, e.g. small and large or property and bodily injury. Various costs and

loadings can be also incorporated into the tariff rates. We propose optimization prob-
lems for rate estimation which enable hedging against expected losses and taking into

account a prescribed loss ratio and other business requirements. Moreover, we introduce

stochastic programming problems with reliability type constraints which take into ac-
count individual risk of each rate cell or collective risk. In the numerical study, we apply

the approaches to Motor Third Party Liability policies.

Keywords: Non-life insurance; rate making; generalized linear models; optimization mod-
els; stochastic programming; MTPL.

1. Introduction

Estimation of prices for which policies are sold is a highly important task for insur-

ance companies. In this paper, we will focus on rating of non-life insurance contracts.

Traditional credibility models take into account known history of a policyholder and

project it into policy rate, see, e.g., Bühlmann and Gisler (2005). However, for new

business, i.e. clients coming for a new insurance policy, the history need not to

be known or the information may not be reliable. Thus traditional approaches of

credibility theory can not be used. We will employ models which are based on set-

tled claims of new contracts from the previous years. This experience is transferred
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using generalized linear models (GLM), see McCullagh and Nelder (1989), which

cover many important regression models used in insurance, cf. Antonio and Beir-

lant (2007), Denuit et al. (2007), de Jong and Heller (2008), Frees (2009), Ohlsson

(2008), Ohlsson, and Johansson (2010). GLM are used for pure premium estima-

tion based on a priori characteristics of the insurance policy, insured object and

policyholder. The frequency–severity approach is the most frequently used, where

expected claim count on a policy during one year and expected claim size (severity)

can be explained by various independent variables, which can serve as segmentation

criteria, e.g. age and gender of the policyholder and region where he or she lives,

properties of the object. We assume that the final rate can be decomposed into a

basic premium level and surcharge coefficient which are set according to the a pri-

ori characteristics. Using these criteria and GLM with the logarithmic link function

we can derive directly basic premium levels and surcharges which enable to take

into account riskiness of each policyholder. However, as we will show in this paper,

these coefficients need not to fulfill business requirements, for example restriction

on maximal surcharge. Moreover, if other link functions are used or the regression

dependence is more difficult, optimization models must be employed to set the basic

premium levels and the surcharge coefficients.

Stochastic programming techniques can be used to solve optimization problems

where random parts appear. They have already found several applications in insur-

ance, see, e.g., Ermoliev et al. (2000) who managed exposure to catastrophic risks,

Consigli et al. (2011) who proposed asset-liability management model for property

and casualty insurance, and Hilli et al. (2011) who evaluated pension liabilities. In

this paper, we will employ a formulation based on reliability type constraints such

as chance constraints and the reformulation based on the one-sided Chebyshev’s

inequality. The distribution of the random parts will be represented by compound

Gamma–Poisson and Inverse Gaussian–Poisson distributions with parameter esti-

mates based on generalized linear models. It can be shown that the Chebyshev’s

inequality produces bound, which is tight with respect to the distributions with the

given expectation and variance, see Chen et al. (2011). Preliminary results on this

topic were presented by Branda (2012d) where simple models were presented and

the logarithmic transformation used also in this paper was suggested.

The basic approach to pricing in non-life insurance is based on known loss dis-

tribution and various principles, e.g. expected value principle, standard deviation,

exponential, percentil, see Kaas et al. (2001), Chapter 5 for a review. Zaks et al.

(2006) formulated nonlinear programming problems for premium estimation and

derived closed formulas for their solutions. These results were confirmed by Falin

(2008) who proposed alternative proofs. The optimization problems were extended

by Frostig et al. (2007) who used a general distance between the losses and the pre-

mium paid. However, these approaches are strongly based on the known distribution

of the random losses or at least its first two moments. In this paper, the moments

of the distribution are estimated using GLM and the specific rate decomposition
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is used. Note that pricing of life-insurance contracts is another important task for

insurance companies, see, e.g., Bertocchi et al. (2013), Gerber (1997).

The main advantages of our optimization approach can be summarized in the

following points:

• GLM with other than logarithmic link function can be used,

• business requirements on surcharge coefficients can be ensured,

• total losses can be decomposed and modeled using different models, e.g. for

standard and large losses or for bodily injury and property damage,

• other modelling techniques than GLM can be used to estimate the dis-

tribution of total losses over one year, e.g. generalized additive models,

classification and regression trees,

• costs and loadings (commissions, tax, office expenses, unanticipated losses,

cost of reinsurance) can be incorporated when our goal is to optimize the

combined ratio instead of the loss ratio, we obtain final office premium as

the output,

• not only the expectation of total losses can be taken into account but also

the shape of the distribution, i.e. contract riskiness can be projected into

the final rates,

• the ruin probability can be controlled for the whole portfolio.

This paper is organized as follows. We propose basic notation in Section 2. In

Section 3, we review definition and basic properties of generalized linear models. We

recall a rate-making approach based directly on GLM. In Section 4, we introduce

optimization models for rates estimation which enable to take into account various

business requirements and the other generalizations proposed above. We extend

these models using stochastic programming techniques in Section 5. In Section 6,

we apply the proposed methods to Motor Third Party Liability (MTPL) contracts.

Section 7 concludes the paper.

2. Notation and preliminaries

Policies that belong to the same class for each rating factor are said to belong to the

same tariff cell and are given the same premium. We denote by i0 ∈ I0 the levels of

basic segmentation criterion, e.g. tariff cells, and by i1 ∈ I1, . . . , iS ∈ IS the levels of

other segmentation criteria which should help us to take into account underwriting

risk, which can be significantly different for each class. We will denote one risk cell

I = (i0, i1, . . . , iS) with I ∈ I := I0 ⊗I1 ⊗ · · · ⊗ IS . Denote by I\0 := I1 ⊗ · · · ⊗ IS
the index set corresponding to the segmentation criteria only. Let WI denote the

number of contracts in the rate cell I. Let aggregated losses over one year for risk

cell I be

LTI =

WI∑
w=1

LI,w, LI,w =

NI,w∑
n=1

XI,n,w,
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where NI,w is the random number of claims for a contract during one year and

XI,n,w is the random claim severity. All the considered random variable are assumed

to be independent. For each I, we assume that the random variables NI,w has the

same distribution for all w, and XI,n,w for all n and w. We denote by NI , XI

independent copies of NI,w, XI,n,w. Then, the following well-known formulas can

be obtain for the mean and the variance of the aggregated losses:

µI = IE[LI ] = IE[NI ]IE[XI ],

µTI = IE[LTI ] = WIµI ,

σ2
I = var(LI) = IE[NI ]var(XI) + (IE[XI ])

2var(NI),

(σTI )2 = var(LTI ) = WIσ
2
I .

We denote the total premium TPI = WIPrI for the risk cell I. We assume that

the risk (office) premium is composed in a multiplicative way from basic premium

levels Pri0 and nonnegative surcharge coefficients ei1 , . . . , eiS , i.e. we obtain the

decomposition

PrI = Pri0 · (1 + ei1) · · · · · (1 + eiS ).

Our goal is to find optimal basic premium levels and surcharge coefficients with

respect to a prescribed loss ratio L̂R, i.e. to fulfill the random constraints

LTI
TPI

≤ L̂R for all I ∈ I. (2.1)

The goal loss ratio L̂R is usually based on a management decision. It is possible to

prescribe different loss ratios for each tariff cell but this is not considered in this

paper. Note that the relation (2.1) is influenced by the exposure of the risk cell WI ,

since the total losses are considered as a random variable. We can compute mean

and variance of the ratio

IE

[
LTI
TPI

]
=

IE[LTI ]

WIPrI
=

IE[NI ]IE[XI ]

PrI
,

var

(
LTI
TPI

)
=
var(LTI )

W 2
I Pr

2
I

=
IE[NI ]var(XI) + (IE[XI ])

2var(NI)

WIPr2I
.

Usually, the expected value of the loss ratio is bounded

IE[LTI ]

TPI
=

IE[LI ]

PrI
≤ L̂R for all I ∈ I. (2.2)

If L̂R = 1, we obtain the netto-premium. However, this approach does not take

into account riskiness of each tariff cell. A natural requirement can be be that

the inequalities (2.1) are fulfilled with a prescribed probability leading to separate

chance (probabilistic) constraints

P

(
LTI
TPI

≤ L̂R
)
≥ 1− ε, for all I ∈ I,

for a small ε ∈ (0, 1).



April 15, 2014 8:52 WSPC/INSTRUCTION FILE Branda˙APJOR˙final

Optimization approaches to multiplicative tariff of rates estimation 5

Another approach bounds the loss ratio over the whole line of business:∑
I∈I L

T
I∑

I∈I TPI
≤ L̂R. (2.3)

Similarly, a probability 1− ε can be prescribed for fulfilling the constraint

P

( ∑
I∈I L

T
I∑

I∈I TPI
≤ L̂R

)
≥ 1− ε.

How the risk is allocated to the tariff cells will be discussed later in this paper.

3. Rate-making using generalized linear models

In this section, we introduce generalized linear models (GLM), cf. Nelder and Wed-

derburn (1972), which cover many regression models useful in insurance. GLM are

based on the following three building blocks:

1. The dependent variable Yi has a distribution from the exponential family with

the probability density function

f(y; θi, ϕ) = exp

{
yθi − b(θi)

ϕ
+ c(y, ϕ)

}
,

where b, c are known functions and θi, ϕ are unknown canonical (dependent on

observation) and dispersion (common for all observations) parameters.

2. A linear combination of independent variables is considered

ηi =
∑
j

Xijβj ,

where βj are unknown parameters and Xij are given values of predictors.

3. The dependency is described by a link function g which is strictly monotonous

and twice differentiable

IE[Yi] = µi = g−1(ηi).

The important members of the exponential family are proposed in Table 1 including

basic characteristics, which are introduced below. The following relations can be

obtained for the expectation and variance under the assumption that b is twice

continuously differentiable

IE[Y ] = b′(θ),

var(Y ) = ϕb′′(θ) = ϕV (µ),

where the last expression is rewritten using the variance function which is defined

as V (µ) = b′′[(b′)−1(µ)], i.e. the variance depends on the mean only.

Maximum likelihood method is used to estimate the parameters of GLM.

Overdispersion is a phenomenon that is often observed in practice for the count data

when the variance need not to be equal to the expected value, i.e. standard Poisson
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Table 1. Examples of distributions from the exponential family.

Distribution Density Dispersion Canonical Mean Variance
f(y; θ, ϕ) param. ϕ param. θ(µ) value µ(θ) function V (µ)

Po(µ) µye−µ

y!
1 ln(µ) eθ µ

Γ(µ, ν) 1
Γ(ν)y

(
yν
µ

)ν
e
− yν
µ 1

ν
− 1
µ

− 1
θ

µ2

IG(µ, λ)
√

λ
2πy3

e
−λ(y−µ)

2

2µ2y 1
λ

− 1
2µ2

1√
−2θ

µ3

distribution is not desirable. In this case, the dispersion parameter ϕ is not set to

1 but is estimated from data. The packages for GLM estimation usually offer an

overdispersed Poisson model or a negative-binomial model. Quasi-likelihood func-

tion must be used for the overdispersed Poisson model, see McCullagh and Nelder

(1989). Zero-inflated models represent an interesting class of regression models for

insurance, see Cameron and Trivedi (1998) for an introduction.

3.1. Pure premium estimation

The pure premium estimation is based on historical data which contain insurance

policies observed from the start date over some period, usually over the first year.

We consider a period with reported and settled claims. Indicators related to the

contract, insured object and policyholder serve as the predictors in GLM. Note

that the time dependent indicators such as car or policy age has to be computed at

the start date. New policies are then rated according to the selected rating factors

estimated to the policy start date.

Although the losses LI are random, the simplest way, which is often used in

practice, is to hedge against the expected value of aggregated losses (2.2). This can

be done directly using GLM with the logarithmic link function g(µ) = lnµ. Poisson

and Gamma or Inverse Gaussian regressions without an intercept can be used to

estimate the parameters for the expected number of claims and claims severity.

If we use the logarithmic link function in both regression models and categorical

regressors, then we can get for each I = (i0, i1, . . . , iS)

IE[NI ] = exp{λi0 + λi1 + · · ·+ λiS},
IE[XI ] = exp{γi0 + γi1 + · · ·+ γiS},

where λi, γi are the estimated coefficients. Thus for the expected loss it holds

IE[LI ] = exp{λi0 + γi0 + λi1 + γi1 + · · ·+ λiS + γiS}.

The basic premium levels and the surcharge coefficient are based on a product of



April 15, 2014 8:52 WSPC/INSTRUCTION FILE Branda˙APJOR˙final

Optimization approaches to multiplicative tariff of rates estimation 7

normalized coefficients. They can be estimated as

Pri0 =
exp{λi0 + γi0}

L̂R
·
S∏
s=1

min
i∈Is

exp(λi) ·
S∏
s=1

min
i∈Is

exp(γi), i0 ∈ I0,

eis =
exp(λis)

minis∈Is exp(λis)
· exp(γis)

minis∈Is exp(γis)
− 1, is ∈ Is.

Under this choice, the constraints (2.2) are fulfilled with respect to the expecta-

tions. Note that if the less risky classes are selected as the reference categories, the

normalization above is not necessary. If the models are estimated using historical

data, it is important to incorporate inflation of the losses. In our case, it is possible

to inflate the basic premium levels only.

The approach above is highly dependent on using GLM with the logarithmic

link function. It can be hardly used if other link functions are employed, interaction

or regressors other than the segmentation criteria are considered. For the aggre-

gated losses modelling, we can employ models with the logarithmic link and with

a Tweedie distribution for 1 < p < 2, which correspond directly to the compound

Poisson–Gamma distributions. The expected loss is explained by the rating factors

only.

However, the surcharge coefficient estimated by both methods above often vi-

olate business requirements, especially they can be too high, as we will show in

the numerical study. Then optimization models can be a natural way to obtain the

basic premium levels as well as the surcharge coefficient. The loss modeling can be

split by claim type, e.g. different models can be used for standard and large losses

or for bodily injury and property damage. Moreover, the riskiness can be taken into

account as we will show in Section 5.

4. Optimization problem for rate estimation

Starting from this section, we can assume that LI contains not only losses but also

various costs and loadings, thus we can construct the tariff rates with respect to a

prescribed combined ratio. For example, the total random loss can be composed as

follows

LI = (1 + vcI)
[
(1 + infs)L

s
I + (1 + infl)L

l
I

]
+ fcI ,

where small LsI and large claims LlI are modeled separately, inflation of small claims

infs and large claims infl, proportional costs vcI and fixed costs fcI are incorpo-

rated into total losses.

The constraints (2.2) with expectation can be rewritten as

IE[Li0,i1,...,iS ] ≤ L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS ) for all I ∈ I. (4.4)

There can be prescribed a business limitation that the highest aggregated risk sur-

charge is lower than a given level rmax ≥ 0. It is also possible to set an upper bound

on each surcharge coefficient. We would like to minimize basic premium levels and



April 15, 2014 8:52 WSPC/INSTRUCTION FILE Branda˙APJOR˙final

8 Martin Branda

surcharges, which are necessary to fulfill the prescribed loss ratio and the business

requirements. The premium is minimized to ensure maximal competitiveness on a

market. This can be further strengthened by discounts, which are not in the scope

of this paper. Moreover, the minimization ensures that the surcharge coefficients

are set to minimal levels, which are necessary to ensure risk classification. We ob-

tain the following nonlinear optimization problem where the premium is minimized

under the condition that the premium covers the expected losses with respect to

the prescribed loss ratio and that the maximal possible surcharge is less than the

prescribed level rmax:

min
∑
I∈I

wIPri0(1 + ei1) · · · · · (1 + eiS ) (4.5)

L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS ) ≥ IE[Li0,i1,...,iS ], ∀(i0, i1, . . . , iS) ∈ I
(1 + ei1) · · · · · (1 + eiS ) ≤ 1 + rmax, ∀(i1, . . . , iS) ∈ I\0

ei1 , . . . , eiS ≥ 0, ∀(i1, . . . , iS) ∈ I\0.

This problem is nonlinear nonconvex, thus very difficult to solve. However, using

the logarithmic transformation of the decision variables ui0 = ln(Pri0) and uis =

ln(1 + eis) and by setting

bi0,i1,...,iS = ln(IE[Li0,i1,...,iS ]/L̂R),

the problem can be rewritten as a nonlinear convex programming problem, which

can be efficiently solved by standard software tools:

min
∑
I∈I

wIe
ui0+ui1+···+uiS (4.6)

ui0 + ui1 + · · ·+ uiS ≥ bi0,i1,...,iS , ∀(i0, i1, . . . , iS) ∈ I
ui1 + · · ·+ uiS ≤ ln(1 + rmax), ∀(i1, . . . , iS) ∈ I\0

ui1 , . . . , uiS ≥ 0, ∀(i1, . . . , iS) ∈ I\0.

The problems (4.5) and (4.6) are equivalent in the following sense: P̂ ri0 , êi1 , . . . , êiS
is an optimal solution of the problem (4.5) if and only if ûi0 , ûi1 , . . . , ûiS is an optimal

solution of the problem (4.6) with the relation ûi0 = ln(P̂ ri0) and ûis = ln(1 + êis).

Note that the estimates do depend on the exposures of the tariff cells in general.

4.1. Optimization over a net of coefficients

In this section, we will outline how to modify the previous optimization model to

the case when the surcharge coefficient are selected from a discrete set of values.

For simplicity we assume that the coefficients are selected from an equidistant net.

Let rs > 0 be a step, usually 0.1 or 0.05. Then the surcharge coefficient can be

modelled as

eis = xis · rs,
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where xis ∈ {0, . . . , Js} are discrete variables and Js = brmax/rsc. However, we

obtain a hardly solvable problem after the logarithmic transform. Therefore, we

will use another formulation using new binary variables. We set

uis =

Js∑
j=0

yis,j ln(1 + j · rs),

together with a condition

Js∑
j=0

yis,j = 1,

which ensures that exactly one coefficient value is selected.

5. Stochastic programming problems for rate estimation

In this section, we propose stochastic programming formulations which take into

account compound distribution of random losses and not only its expected value as

above. We employ chance constraints for satisfying the random individual con-

straints (2.1) or the collective constraint (2.3) with prescribed levels. However,

chance constrained problems are very computationally demanding in general and

various approximation methods are usually employed. We refer to Prékopa (1995,

2003), Shapiro et al. (2009) for a comprehensive review of the results and methods

available for chance constrained problems. The set of feasible solutions described by

chance constraints is usually non-convex. A sufficient condition for convexity is log-

concavity of the distribution, cf. Prékopa (1995). Recently, Ninh and Prékopa (2013)

proved log-concavity of many compound distributions including Poisson–Gamma

distribution. P-level efficient points (pLEPs) introduced by Prékopa (1990) can be

employed for solving problems with random right-hand side and discrete distribu-

tion. A mathematical programming approach for finding pLEPs was introduced by

Lejeune and Noyan (2010). Recently, Lejeune (2012) proposed a new pattern def-

inition of pLEPs and an algorithm based on mixed-integer programming. Sample

approximation technique together with a mixed-integer reformulation were inves-

tigated by Branda (2012b), Luedtke and Ahmed (2008), who derived an exponen-

tial rate of convergence of the approximated solution to the true one. Reliability

constraints were discussed by Nemirovski and Shapiro (2006). They proposed a

Bernstein approximation for a problem with affine random constraints. Recently,

Ji et al. (2013) introduced a new tight convex binary quadratic reformulation for

chance-constrained quadratic knapsack problem.

An alternative way to deal with random constraints is to employ penalty func-

tions and to penalize possible violations with respect to the decision vector and

random vector simultaneously. The penalized constraints can be incorporated into

the objective functions, cf. Branda (2012a, 2013), Ermoliev et al. (2000), or bounded

as new constraints leading to (generalized) integrated chance constraints, see Klein

Haneveld and van der Vlerk (2006), Branda (2012c). All the mentioned approaches
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were shown to be asymptotically equivalent under mild conditions by Branda

(2012a, 2012c).

5.1. Individual risk model

If we prescribe a small probability level ε ∈ (0, 1) for violating the loss ratio in each

tariff cell, we obtain the following chance (probabilistic) constraints

P
(
LTi0,i1,...,iS ≤ L̂R ·Wi0,i1,...,iS · Pri0 · (1 + ei1) · · · · · (1 + eiS )

)
≥ 1− ε,

which can be rewritten using quantile function of LTi0,i1,...,iS as

L̂R ·Wi0,i1,...,iS · Pri0 · (1 + ei1) · · · · · (1 + eiS ) ≥ F−1
LTi0,i1,...,iS

(1− ε).

By setting

bI = ln

[
F−1
LTI

(1− ε)

WI · L̂R

]
,

the formulation (4.6) can be used. However, it can be very difficult and time con-

suming to compute the quantiles F−1
LTI

for the compound distributions for all I ∈ I,

see, e.g., Withers and Nadarajah (2011), and Central Limit Theorem can not be

used, since the expositions WI of the tariff cells can be too low. Instead of approx-

imating the quantiles, we can employ the one-sided Chebyshev’s inequality based

on the mean and variance of the compound distribution resulting in the constraints

P

(
LTI
TPI

≥ L̂R
)
≤ 1

1 + (L̂R · TPI − µTI )2/(σTI )2
≤ ε, (5.7)

for L̂R · TPI ≥ µTI . Chen et al. (2011) showed that the bound is tight for all

distributions D with the expected value µTI and the variance (σTI )2, i.e.

sup
D: IE[LTI ]=µ

T
I , var(L

T
I )=(σTI )2

P
(
LTI ≥ L̂R · TPI

)
=

1

1 + (L̂R · TPI − µTI )2/(σTI )2
,

for L̂R · TPI ≥ µTI . Thus, the constraint can be seen as robust with respect to all

distributions with the given mean and variance, i.e. it is ensured that

sup
D: IE[LTI ]=µI , var(L

T
I )=(σTI )2

P
(
LTI ≥ L̂R · TPI

)
≤ ε.

Note that improved Chebyshev’s inequalities were provided by Popescu (2005) for

symmetric and symmetric unimodular distributions. However, these estimates are

not directly applicable to our problems and some effort into deriving a useful bound

will be necessary.

The inequality (5.7) leads to the following constraints, which serve as conserva-

tive approximations:

µTI +

√
1− ε
ε

σTI ≤ L̂R · TPI .
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Finally, the constraints can be rewritten as

µI +

√
1− ε
ε

σI√
WI

≤ L̂R · PrI . (5.8)

If we set

bI = ln

[(
µI +

√
1− ε
εWI

σI

)
/L̂R

]
,

we can employ the linear programming formulation (4.6) for rate estimation. Note

that in this case the exposure of each rating cell is incorporated directly into bI .

Moreover, when WI increases, we can easily see that the influence of the standard

deviation σI on the rate decreases.

5.2. Collective risk model

In the collective risk model, a probability is prescribed for ensuring that the total

losses over the whole line of business (LoB) are covered by the premium with a high

probability, i.e.

P

(∑
I∈I

LTI ≤
∑
I∈I

WIPrI

)
≥ 1− ε.

However, without an additional method we are not able to share the risk surcharges

between the policies. Therefore, Zaks et al. (2006) proposed the following program

for rate estimation, where the mean square error is minimized under the reformu-

lated constraint using the Central Limit Theorem:

min
PrI

∑
I∈I

1

rI
IE
[
(LTI −WIPrI)

2
]

s.t. (5.9)∑
I∈I

WIPrI =
∑
I∈I

WIµI + z1−ε

√∑
I∈I

WIσ2
I ,

where rI > 0 are weights and z1−ε denotes the quantile of the standard normal

distribution. Various premium principles can be obtained by the choice of rI . Ac-

cording to Zaks et al. (2006), Theorem 1, the program has a unique solution

P̂ rI = µI + z1−ε
rIσ

rWI
,

with r =
∑
I∈I rI and σ2 =

∑
I∈IWIσ

2
I . It is possible to use these estimates in the

program (4.6). If we want to incorporate the prescribed loss ratio L̂R for the whole

LoB into the previous approach, we can set

bI = ln

[(
µI + z1−ε

rIσ

rWI

)
/L̂R

]
,

within the problem (4.6). Various choices of the weights rI were discussed by Zaks

et al. (2006), e.g. rI = 1 or rI = WI were suggested leading to semi-uniform or

uniform risk allocations.
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6. Numerical example

In this section, we apply the proposed approaches to Motor Third Party Liabil-

ity (MTPL) contracts. We consider policies with settled claims which are simu-

lated using characteristics of a real MTPL portfolio of the leading Czech insurance

companies. The basic data contains 60 000 policies, the extended then 600 000.

The claim counts were simulated using the Poisson distribution, the corresponding

claim severity using the Gamma distribution. The following indicators are used as

the regressors and segmentation variables:

• tariff group: 5 categories (up to 1000, up to 1350, up to 1850, up to 2500, over

2500 ccm engine),

• region: 4 categories (over 500 000, over 50 000, over 5 000, up to 5 000 inhabi-

tants),

• age: 3 categories (18-30, 30-65, 65 and more years),

• gender: 2 categories (men, women).

Many other available indicators related to a driver (marital status, type of licence),

vehicle (engine power, mileage, value), policy (duration, no claim discount) can be

included into the models and tested for significance.

We employ the approaches proposed in the previous sections to find the basic

premium levels for the tariff groups and the surcharge coefficients for the other crite-

ria. The goal loss ratio for new business is set to 0.6 and the maximum feasible sur-

charge to 100 percent. The parameter estimates for overdipersed Poisson, Gamma

and Inverse Gaussian generalized linear models can be found in Table 2. The Inverse

Gaussian GLM is employed as an alternative model to the Gamma one. Standard

errors and exponentials of the coefficient are also included. All included variables

are significant at the 1% level based on the Wald and likelihood-ratio tests. The

parameters of GLM were estimated using SAS GENMOD procedure (SAS/STAT

9.3) and the optimization problems were solved using SAS OPTMODEL procedure

(SAS/OR 9.3).

Since we are using the logarithmic link function, the computation and interpreta-

tion of the expected claim numbers and severity can be preformed using the column

which contains the exponentials of the estimated parameters. For example, for the

expected number of claims for a car with 1400 ccm engine and policyholder-woman,

35 year old, living in a town with 80 000 inhabitants, we obtain

E[N3222] = 0.042 · 1.458 · 1.380 · 1.000 = 0.085.

Similarly, for the expected claim severity using the Gamma distribution, we get

E[X3222] = 34252 · 1.116 · 1.000 · 1.000 = 38225.

Thus, we can compare directly the contribution of various categories to the riskiness

of a contract. The expected number of claims as well as the expected claim severity

increase with higher tariff groups based on the engine volume. Similar behaviour can

be observed for region where regions with higher number of inhabitants are much
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riskier. This phenomenon is usually explained by a heavy traffic and expensive cars

in such areas. Age and gender of a policyholder have been identified as insignificant

in the severity models thus they are omitted. However, younger drivers and men

have higher expected number of claims, therefore these factors contribute to the

final rates.

The basic premium levels and surcharge coefficients based on GLM, expected

value model (EV), individual risk model and collective risk model can be found in

Tables 3, 4. The GLM and EV estimates are derived using the basic data, because

the simulation technique does not change the results compared with the extended

data. It is not surprising that the coefficients which are estimated directly from

GLM do not fulfill the business requirements and the highest possible surcharge is

much higher than 100 percent, in particular 224 percent. This drawback is removed

by our optimization approaches. The decrease of the surcharge coefficient leads

to the increase of the basic premium levels. We used the reliability type model

with change constraints and the reformulation based on the Chebyshev’s inequality

with ε = 0.1, cf. individual risk model columns. Compared with the EV model,

the rates increased significantly. However, higher the exposure is, closer the basic

premium levels to the EV ones are. The increase is reduced in the second stochastic

programming problem based on the collective risk constraint with the level ε = 0.1,

cf. collective risk model columns. Obviously, the price for fulfilling the business

requirements is a poorer risk classification for the policies, which is followed by zero

coefficients for region 3. Note that the stochastic programming models with the

Inverse Gaussian distribution used for severity modeling lead to higher estimates of

the basic premium levels because the estimated variance is much higher than using

the Gamma regression. This should be used as a warning against using improper

model for the severity modeling. No stability in surcharge coefficients is observed,

thus the method as well as the exposure influence the estimates.

7. Conclusion

In this paper, we compared several methods for rating of non-life (MTPL) insurance

contracts which take into account riskiness of various segments. The probability

distribution of losses was described by generalized linear models. Direct application

of the estimated coefficient leads to the surcharge coefficients which do not fulfill

the business requirements. Therefore, various optimization models were introduced.

Stochastic programming formulation was employed to consider the distribution of

the random losses on a policy. We showed that the business requirements, selected

method, exposure and severity distribution can have a significant influence on the

final rates.

Future research will be devoted to dynamic models which can take into account

development of policyholder riskiness. In this case, generalized linear mixed models

(Breslow and Clayton 1993) and dynamic stochastic programming models will be

employed.
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Table 2. Parameter estimates of GLM (60 000).

Overd. Poisson Gamma Inv. Gaussian

Param. Level Est. Std.Err. Exp Est. Std.Err. Exp Est. Std.Err. Exp

TG 1 -3.446 0.044 0.032 10.31 0.017 30 058 10.31 0.018 30 095
TG 2 -3.293 0.038 0.037 10.36 0.014 31 625 10.36 0.015 31 645

TG 3 -3.181 0.037 0.042 10.44 0.014 34 252 10.44 0.015 34 310
TG 4 -3.126 0.037 0.044 10.53 0.014 37 428 10.53 0.015 37 438

TG 5 -3.019 0.040 0.049 10.70 0.015 44 547 10.71 0.018 44 593

region 1 0.387 0.033 1.473 0.209 0.015 1.233 0.208 0.017 1.231

region 2 0.377 0.030 1.458 0.110 0.013 1.116 0.109 0.015 1.116

region 3 0.103 0.031 1.109 0.066 0.014 1.068 0.064 0.015 1.066
region 4 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

age 1 0.409 0.028 1.505 - - - - - -

age 2 0.322 0.025 1.380 - - - - - -

age 3 0.000 0.000 1.000 - - - - - -

gender 1 0.172 0.019 1.188 - - - - - -
gender 2 0.000 0.000 1.000 - - - - - -

Scale 0 0.624 0.000 0.000 12.628 0.264 - 0.002 0.000 -

Table 3. Estimates of basic premium levels and surcharge coefficients for Gamma severity (Exposures

in thousands).

Individual risk model Collective risk model

Parameter GLM EV Exp. 60 Exp. 300 Exp. 600 Exp. 60 Exp. 300 Exp. 600

TG 1 958 2 590 6 962 4 546 3 973 2 768 2 670 2 646
TG 2 1 175 3 177 8 139 5 396 4 746 3 353 3 256 3 233

TG 3 1 423 3 848 9 531 6 389 5 645 4 023 3 926 3 903

TG 4 1 644 4 445 10 830 7 300 6 464 4 620 4 523 4 500
TG 5 2 176 5 885 13 901 9 470 8 420 6 061 5 964 5 941

region 1 .815 .277 .374 .354 .347 .418 .197 .220

region 2 .628 .146 .236 .217 .211 .282 .077 .097

region 3 .184 .000 .000 .000 .000 .000 .000 .000
region 4 .000 .000 .000 .000 .000 .000 .000 .000

age 1 .505 .318 .295 .292 .289 .203 .415 .386
age 2 .380 .209 .220 .208 .200 .110 .301 .274

age 3 .000 .000 .000 .000 .000 .000 .000 .000

gender 1 .188 .188 .124 .144 .151 .173 .181 .183
gender 2 .000 .000 .000 .000 .000 .000 .000 .000
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Branda, M (2013). On relations between chance constrained and penalty function problems
under discrete distributions. Mathematical Methods of Operations Research, 77(2),
265–277.

Breslow, NE and DG Clayton (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88(421), 9–25.
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